Solutions overview
Harness the power of your data
Support and investigations
Support services for Ravelin
Online payment fraud
Account security
Policyabuse
Marketplace fraud
3DSecure
Resource Zone
Deep dives on fraud & payments topics
API & developer docs
APIs, glossary, guides, libraries and SDKs
Global Payment Regulation Map
Track PSD2 & more with a full report
Blog
The latest fraud & payments updates
Insights
In-depth guides to fraud, payments & security
About Ravelin
Discover the story about Ravelin
Careers
Join our dynamic team
Customers
Read more about our happy customers
Press
Get the latest Ravelin news
Support & investigations
Accept more payments securely
Protect your customer accounts
Policy abuse
Stop policy abuse to protect your bottom line
Ravelin for marketplace fraud
3D Secure
Ravelin 3DS & SDKs
Resource zone
Global Payment regulation map
Read more about our happy custmomers
Ravelin Insights
Everything you need to know about link analysis, graph databases and how to uncover fraud networks
Get your free copy in your inbox now
In a nutshell, link analysis is a technique used to assess and evaluate connections between data. This is much easier and faster when the data is shown in a graph network, so sometimes link analysis is called network visualization.
A graph network is a way of visualising connections between various types of information.
These networks are stored in graph databases.
Nodes: circles which represent facts or data such as people, businesses, accounts, addresses. The nodes have attributes or properties which store information about the node in key/value pairs.
Edges: lines between nodes which represent the relationships. They can also have properties such as start date, length of time, distances or costs.
In a graph database, the relationships between the data are just as important as the data itself
Traditional databases allow you to see blocks of facts - but if you want to find out how they’re connected, you need to work harder to do some analysis. If you’re dealing with a large amount of data this can take significant time and effort. Let’s look at example using an online bookshop...
In a graph database, all the information about a customer’s account, email, shipping address, order details and payment information is connected and visible at the same time.
You can see every order each customer has ever made on the site, how they’ve paid and where they’ve had them shipped. There are no limits on adding nodes and edges - such as the device used for the transaction, additional payment methods, shipping addresses and more.
Our brains love visualisation - over 50% of the brain is involved in visual processing, so a graph network is inherently easy to understand.
Reveal hidden connections between fraudulent customers to build a profile of what a fraudster looks like and use this information to feed into machine learning for fraud prevention.
Spend less time on manual scanning and analysis to discover and identify trends, and get an always up-to-date picture of your customer behaviour and fraudulent activity.
In any crime drama, there’s always a scene where the detective has a wall full of pictures with string all over it - connecting locations with suspects and dates. The detective often stares at the wall and pieces together what happened using all the evidence.
Link analysis is the detective work behind fraud, and a graph network is like the detective’s wall. It shows you all the evidence across all your customers in a simple format, so you can join the dots between fraudster networks and prevent future fraud.
Yes! Fraudsters are part of a complex underground community, they are constantly talking and trading with each other. There are countless ‘how to’ tutorials for hacking and fraud on the dark web. Although perhaps as is to be expected, it was recently revealed that many payment fraud guides are actually defrauding would-be fraudsters with incomplete information and out-of-date techniques.
Card details can easily be faked or blocked, so fraudsters buy card details in the thousands. This means you might see multiple credit cards being added to an account to make new orders. Or you could notice the same device being used to open lots of new accounts quickly, with slight variants of the same email address.
Fraudsters often alert each other to share lucrative opportunities and cooperate with each other. We often seen fraudsters post on forums inviting people to make requests for an /order, with a prepared secure pick-up location address.